(1) Course info
mathweb. ucsd.edu/~/ni/mathe5/B
Two important links.
schedule. html - progress 2 readings
homework. hem - works
Grading: homework or presentation
incritting \& presentation.
(2) Lie groups \& Lie algebras.

Def 1.a: G is a lie group if G is a smooth mold. \& a soup satisfying

9: $G \rightarrow G$

$$
g \rightarrow \varphi(g)=g^{-1}
$$

\& $\psi: G \times G \rightarrow G$
(s.h) $\quad \psi(g, h)=g \cdot h$
are 5 moth.
Remark: (i) \exists unique analytic structure
(ii) \exists Hilbert's $5^{\text {th }}$ problem.

Ref: Potrjangin's book \& Montgomery \& Zippin's book.
E. g
(i)

$$
G L(n, \mathbb{R}) \quad \subset \mathbb{R}^{n^{2}}
$$

or \mathbb{C}
open subset

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A
$$

(ii) $S L(n, \mathbb{R}) \subset G L(n, \mathbb{R})$

$$
1 A \quad \operatorname{det}(A)=1
$$

Deful.b. Lie algebra of. (over \mathbb{R}, \mathbb{C} fir other $\begin{aligned} & \text { fields } \\ & \text { (focus is })\end{aligned}$
(i) a vector space over \mathbb{F}-field. (focus is on \mathbb{C})
$\begin{array}{lll}\text { (1) a vector space } & \text { For number theory needs } \mathbb{Z}_{p} & g \times g \rightarrow g \\ \text { bilinear } & \forall v, w \in \text { g } & \exists[v, v] \text { in } v \& i r\end{array}$ $[i, \cdot] \rightarrow$
\& satisfying: (a) $[v, w]=-[w, v]$
(b)

$$
[[x, y], z]+[[y, z], x]+[[z, x], y]=0
$$

Jamb identity
E.g. (i) $\left(\mathbb{R}^{3}, x\right)$

Ex: Check it! which Lie group has it as its Lie algebra?
(ii) $\quad \%=X(M)$ - smooth Vector fields on $M \underline{\text { Hint: } \text { que } q u \text { ternions! }}$

$$
\left.\begin{array}{l}
X=X^{i} \frac{\partial}{\partial x^{i}} \text { locally } \underbrace{\text { Vector valued }} \text { functions }
\end{array} X^{X^{i}(x) \frac{1}{\partial x}} \begin{array}{c}
X^{\prime}(x) \\
\vdots \\
X^{n}(x)
\end{array}\right)
$$

Namely $\quad\left[\begin{array}{ll}x & Y\end{array}\right]^{k}=\left(\sum_{i} X^{i} \frac{y^{k}}{\partial x^{i}}-\sum_{i} Y^{i} \frac{\partial x^{k}}{\partial x_{i}}\right)$

$$
k=1, \cdots, n
$$

$250 \mathrm{~A} / 251 \mathrm{~A} \Rightarrow \notin(M)$ is a Lie algebra!
(3) Relations: - $v_{i-}^{\text {the }}$ differentiation
(i). $x, y \in G_{e}=$ the tangent space ate $\uparrow \in G$
-The tangent space ate identity.

$$
\begin{aligned}
& {[x, y]:=[X, Y]} \\
& X(g):=\left(L_{g}\right)_{*}(x) \\
& L_{g:} G \rightarrow G \\
& h \rightarrow j h .
\end{aligned}
$$

$$
\begin{aligned}
L_{g}: G \rightarrow G_{g} \\
G \rightarrow j h .
\end{aligned}
$$

such a vector field called the left invariant v.S.
since $\forall \sigma$
the defining property of a left invariant vector field.

Inner automorphism: $G_{n}: G \rightarrow G \quad a_{n}(g)=h g h^{-1}$

$$
d\left(a_{h}\right) \text { or } \quad\left(a_{h}\right)_{*}=G_{e} \rightarrow G_{e} a_{h_{h_{2}}=a_{h} \cdot a_{h 2}} a_{h o} a_{h-1}=i d
$$

is called the adjoint representation of G :

$$
\begin{aligned}
& A_{d}^{\prime d}(h): o f \rightarrow G \quad \text { Ad }: G \rightarrow G L(h, g) \\
& \operatorname{Ad}(h):=\left(a_{h}\right)_{*} \quad a_{h} \cdot a_{h^{-1}}=i d \\
& A d\left(h_{1} h_{2}\right)=d a_{h_{1}-1}=d\left(a_{h_{1}} \cdot a_{h_{2}}\right)=d a_{h_{1}} \cdot d a_{h_{1}}=A d\left(h_{1}\right) A d\left(h_{2}\right)
\end{aligned}
$$

Clearly. $\quad \operatorname{Ad}\left(l_{1}, h_{2}\right)=\operatorname{Ad}\left(h_{1}\right) \cdot \operatorname{Ad}\left(h_{2}\right)$
$\left[\begin{array}{lll}R: & G_{1} \longrightarrow G_{2} & \text { is a homomorphism. } \\ \text { if } & R\left(g_{1} g_{2}\right)= & R\left(g_{1}\right) . R\left(g_{2}\right) .\end{array}\right]$
A homomophisn $f: G \rightarrow G L(n, V)$ is called a linear representation of $G . \quad\left[\begin{array}{l}\text { namely a realization of } G \\ \text { into } G L(n, V)\end{array}\right.$
$X_{\rho}(s):=\operatorname{tr}(\rho(s))$ is called the character (function).

$$
A d: G \rightarrow G(l, g)
$$

$\frac{\text { Lemma }}{X Y Y} \cdot \underbrace{}_{\text {left invariant }}[X, Y](e)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}(\exp (t x))\left(Y_{e}\right)$.
X, Y left invariant v.f. $\quad l_{t=0} d(\underbrace{\left.a_{\exp (t x)}\right)})\left(Y_{e}\right)$
Here $\exp (t)$ denote the 1 parameter family of
differmorphisms generated by $X_{\text {with }} \quad 0 \rightarrow e \rightarrow$ Pt $_{t}(e)$

(ii) In local coordinates. near $e-\quad x(e)=0$
no terms $x^{\beta} x^{\gamma}$ Since $\psi(x, 0)=x$
Define $[\xi, \eta]^{\alpha} \equiv \quad\left(b^{\alpha}-b_{\gamma \beta}^{\alpha}\right)^{\alpha} \xi^{\beta} \eta^{(\gamma]}=\sum_{\beta, r} C_{\beta \gamma}^{\alpha} \xi^{\beta} \eta^{\gamma}$ measures the $\xi=\xi^{\alpha} \frac{\partial}{\partial x^{\alpha}}, \quad \eta=\eta^{\alpha} \frac{\partial}{\partial x^{\alpha}} C_{p \gamma^{2}}$ locally. \quad commutativeness up
We check rit does satisfy r the Jawbi identity. to and order.

$$
x \cdot(y \cdot z)
$$

$$
(x \cdot y) \cdot z
$$

use $\psi(x, \psi(y z))=\psi(\underbrace{\psi(x, y) z)}_{=\alpha^{\alpha} \gamma^{\alpha}(x, y)}$ called the structure Constant

$$
\begin{align*}
& x^{\alpha}+\psi^{\alpha}(y, z)+b_{\beta \gamma}^{\alpha} x^{\beta} \psi^{\gamma}(y, z) \quad+b_{\beta \gamma}^{\alpha} \psi^{\beta} z^{\gamma} \\
& =x^{\alpha}+y^{\alpha}+z^{\alpha}+b_{\beta \gamma}^{\alpha} x^{\beta} y^{\alpha} \\
& x^{\alpha}+y^{\alpha}+z^{\alpha}+b_{\beta \gamma}^{\alpha} y^{\beta} z^{\gamma} \\
& +b_{\beta \gamma}^{\alpha} b_{\mu \nu}^{\beta} x^{\mu} y^{v} z^{\gamma} \\
& +b_{\beta \gamma}^{\alpha} b_{\mu \nu}^{\gamma} \frac{x^{\beta} y^{\mu} z^{v}}{x^{\mu} y^{v} z^{s}} \\
& b_{\mu r}^{\alpha} b_{v s}^{\nu} \tag{*}
\end{align*}
$$

$$
\begin{aligned}
& \psi(x, 0)=\psi(0, x)=x \\
& x \cdot e=e \cdot x=x \\
& \psi(x, \varphi(x))=0 \\
& x \cdot x^{-1}=e \\
& \psi(x, \psi(y, z))=\psi(\psi(x, y), z) \\
& x \cdot(y \cdot z)=(x \cdot y) \cdot z \\
& \frac{\partial^{2} 4^{\alpha}}{3-2 y^{\gamma}}(0.0)
\end{aligned}
$$

(*) implies the Jacobi identity. $\left[\begin{array}{l}\text { In fact, (*) is NOT Completely } \\ \text { Correct. The full details will be } \\ \text { The }\end{array}\right]$ in Remark (iv) The checking is in
$\left\{C_{\beta \gamma}^{\alpha} \doteq b_{p r}^{\alpha}-b_{\gamma \beta}^{\alpha}\right\}$ are called the structure constants $\begin{gathered}\text { scanned h hap- } \\ \text { written notes }\end{gathered}$
Relation 2: - Integration
Theorem: Let G be a real analytic Lie group.
Then in the neighborhood of $e \in G$, the structure constants determine the ģmmultiplication. In fact, we construct ψ. out of
(4) Remarks.

$$
\begin{aligned}
& \text { ad: is a linear map: } g \rightarrow q \\
& \forall d(A d)(x) .
\end{aligned}
$$

(i) Lemma $\Rightarrow \operatorname{ad}_{x}(Y)=[X, Y]$

$$
\begin{aligned}
& \text { It is also defined as }(A d)_{*}(x): \\
& \text { ad } x:=\quad \text { Ad: } G \rightarrow G L(n, I) \\
&
\end{aligned}
$$

$\left(A d_{*}\right): G e \simeq g \longrightarrow \quad g l(n, g) \Leftarrow$ the Lie algebra of $G L(n, o g)$

1 - parameter family of group. At too its tangent is $d \rho(x)$ is the tangent with the same initial data. its tangent is vector.

$$
\begin{aligned}
Y(\rho(a))_{: ~}=d \rho(x) & (\rho(a))=d \rho(X(a))=d \rho\left(\left(L_{a}\right)_{*}\left(X_{e}\right)\right) \\
& =\left(L_{\rho(a)}\right)_{*} d \rho\left(X_{e}\right) \\
& =\left(L_{\rho(a)}\right)_{*} Y_{e}
\end{aligned}
$$

X is left invariant $\Rightarrow Y=d \rho(X)$ is left invariant. $\begin{gathered}\text { Then (} n \text { (*) follows } \\ \text { from the uniqueness }\end{gathered}$ Namely (x^{*}) follows from $\left(x^{\prime}\right)$, which is more general.

Details Whiner. P104
(ii) The coordinates of 1 st kind. \& two definitions are the same.
$\exp : G_{e} \longrightarrow G \quad \exp (X) \in G$

$$
X=\left.\sum x^{i} e_{i} \quad n_{n c m e l y} \exp (t x)\right|_{t=1}
$$

This is a diffeomorphism \Rightarrow if $\delta \ll 1 \quad|x| \leqslant c^{\Gamma}$
$\exp :\{|x| \leqslant \delta\} \subset G e \longrightarrow G$ is a coordinate chert.

$$
\begin{aligned}
& \text { (iii) } \\
& x(\tau)=X_{\tau} \text { - are the } 1 \text {-parameter families } \\
& y(t)=Y_{t} \\
& x(\tau)^{-1}=-x \tau \\
& I=x(\tau) y(t) x(\tau)^{-1} \\
& =\underbrace{\tau X^{\alpha}+t Y^{\alpha}+b_{\beta \gamma}^{\alpha} \tau X^{\beta} t Y^{\gamma} \underbrace{-\tau X^{\alpha}}} \\
& +b_{\beta \gamma}^{\alpha}\left(\tau X^{\beta}+t Y^{\beta}+b_{\mu \nu}^{\beta} \tau t X^{\mu} Y^{\nu}\right)(-\tau X)^{\nu}+\text { higherorder } \\
& =t Y^{\alpha}+t \tau\left[b_{\beta \gamma}^{\alpha} X^{\beta} Y^{\gamma}-b_{\gamma \beta}^{\alpha} X^{\beta} Y^{\gamma}\right]+\text { other. } \\
& I=\exp (\tau X) \exp (t Y) \exp (-\tau X) \\
& \left.\frac{\partial^{2} I}{\partial \operatorname{tar}}\right|_{(0,0)}=\left[\begin{array}{ll}
X & Y
\end{array}\right] \text { by hermes } \\
& \text { two Lie-bracket } \\
& \text { definitions } \\
& \text { Coincide }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \psi(\underbrace{\alpha}{ }^{\psi(v, y)}, z_{r})=\psi^{\alpha}(x, y)+\infty z^{\alpha}+\underbrace{b_{p r}^{\alpha} \psi^{\beta}(x, y) z^{\alpha}} \\
& +\underline{h_{i j k}^{\alpha} \psi^{i} z^{j} z^{k}}+\underline{g_{i j h}^{\alpha} \psi^{i} \psi^{j} z^{k}} \\
& =\underbrace{x^{\alpha}+y^{\alpha}+z^{\alpha}+b_{\beta \gamma}^{\alpha}\left(x^{\beta}+\underline{y}^{\beta}+\underline{b}_{s t}^{\beta} x^{s} y^{t}+\cdots\right) \underline{z}^{\gamma}} \\
& +g_{i j k}^{\alpha}(\underbrace{x^{i}+y^{i}+\underbrace{i}_{+\cdots} x^{s} y^{t}})(\underbrace{x^{j}+y^{j}+b^{j}} t^{x^{s} y^{t}}) \underline{z}^{k}
\end{aligned}
$$

Hence $\exists \quad\left[\begin{array}{l}\alpha \\ b_{j} b_{s t}^{\beta}\end{array} x^{s} y^{t} z^{\gamma}\right.$

$$
g_{s t \gamma}^{\Omega} x^{s} y^{t} z^{\gamma}+g_{t s \gamma}^{\alpha} x^{s} y^{t} z^{\gamma}-\text { extraterms. }
$$

Similarly $\psi^{(x} x \psi(y, z)$ has two extra terms involve

$$
\hat{h}_{s t \gamma}^{\alpha}
$$

One needs t include their Contribution in checking the Jacobi identity.
(5) Proof of the theorem.

$$
\begin{aligned}
\varphi_{j}^{i} & (u, x) \\
& =\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}
\end{aligned}
$$

$$
\frac{\text { A PDE result: }}{\frac{\partial u^{i}}{\partial x_{j} \partial x_{k}}=\frac{\partial^{2} u^{i}}{\partial x_{n} \partial x_{j}}} \quad\left\{\begin{array}{l}
\frac{\partial u^{i}}{\partial x_{j}}=\varphi_{j}^{i}(\underbrace{u_{1} \ldots u_{n},} \underbrace{\left.x_{1} \ldots x_{n}\right)} \\
u^{i}\left(x_{1}^{0} \ldots x_{0}^{0}\right)=u_{0}^{i} \quad u\left(x_{0}\right)=u_{0}
\end{array}\right.
$$

admits a ${ }^{\text {an }}$ Solution if \& only if
\longrightarrow Compatibility Conditions
$\left[\varphi_{j}^{i}(u, x)\right.$ ore andytic, the solution is local near x^{0}
\& andytic. Holds for smooth case. of. Narashimhan's sis on $R \& C$
manifolds
The proof of the theorem involves a $\frac{P D E}{A} \& \frac{a D E}{}$ (system.)
(a) The PDE part:

The solution is $4\left(x, x_{0}, y_{0}\right)$ Satisfies $\{$

Let

$$
\begin{aligned}
& \\
& \Rightarrow \psi(x, y):=\psi(x, e, y) \\
& \Rightarrow \psi(0, y)=y<
\end{aligned}
$$

$z=\varphi(\psi(y, y)]$
y is a parameter
(PDE-1)

$$
\operatorname{Lhet}^{\psi\left(x_{0}, x_{0} y_{0}\right)=y_{0}}
$$

$$
=\left.{\frac{\partial \psi^{\alpha}}{\partial x^{\gamma}}}^{\alpha}(x . y)\right|_{y=\varphi(x)}
$$

$$
\underbrace{\psi(y, z)}=y \cdot z=y \underline{(x y)^{-1}}=\underline{x}^{-1}=\underline{\varphi}(x)
$$

$$
\begin{aligned}
& \text { LbS = }\left.\frac{\partial \psi^{\alpha}}{\partial x^{\beta}}\right|_{x=\psi(x, y)} \cdot \underbrace{\frac{\partial \psi^{\beta}}{\partial x^{\gamma}}(x, y)} \\
& \begin{array}{rl}
\partial^{\alpha}(\psi z) \\
\partial \psi^{3} & z
\end{array}=\varphi(\psi) \quad y=\underline{\varphi}(\psi(x, y)) \\
& =\left.\frac{\psi^{2}}{\partial x^{\gamma}}(\underbrace{\psi(x, y)}, \dot{z})\right|_{z=\varphi(\psi(x, y)} \\
& =\left.\frac{\partial \psi^{\alpha}(x, \psi(y, z))}{\partial x^{\gamma}}\right|_{z=\varphi(\psi(x, y))}
\end{aligned}
$$

Hence the problem is reduce to solving (PDE-1), which is reduced to (Com)
The (com)-condition: $\frac{\partial \psi^{\alpha}}{\partial x^{\gamma}}=U_{p}^{\alpha}(\psi) v_{\gamma}^{\beta}(x)-\left(P D E-\left.\right|^{\prime}\right)$

$$
\varphi_{\gamma}^{\alpha}(\psi, x)=\frac{U_{\beta}^{\alpha}(\psi) v_{\gamma}^{\beta}(x)}{H}
$$

The (com) becomes the following:

$$
\begin{aligned}
& \frac{\partial \varphi_{k}^{\alpha}}{\partial \psi^{\beta}} \varphi_{j}^{\beta}(\psi, x)+\frac{\partial \varphi_{k}^{\alpha}(\psi, x)}{\partial x^{j}} \\
= & \frac{\partial u_{s}^{\alpha}}{\partial \psi^{\beta}} v_{k}^{s}(x) u_{t}^{\beta}(\psi) v_{j}^{t}(x)+u_{\beta}^{\alpha}(\psi) \frac{\partial v_{k}^{\beta}}{\partial x_{j}} \\
& \frac{\partial \varphi_{j}^{\alpha}}{\partial \psi^{\beta}} \varphi_{k}^{\beta}(\psi, x)+\frac{\partial \varphi_{j}^{\alpha}}{\partial x^{k}}(\psi, x) \\
= & \frac{\partial u_{s}^{\alpha}}{\partial \psi^{\beta}} v_{j}^{s}(x) u_{t}^{\beta}(\psi) v_{k}^{t}(x)+u_{\beta}^{\alpha}(\psi) \frac{\partial v_{j}^{\beta}}{\partial x^{k}}
\end{aligned}
$$

Multiply $v_{\alpha}^{i}(\psi)$ on bothside \& compute

$$
\begin{aligned}
& -u_{s}^{\alpha}(\psi) \frac{\partial v_{\alpha}^{i}}{\partial \psi \beta} u_{t}^{\beta}(\psi) v_{k}^{s}(x) v_{j}^{t}(x)+\frac{\partial v_{k}^{i}}{\partial x_{j}^{j}} \\
& = \\
& =-u_{s}^{\alpha} \frac{\partial v_{\alpha}^{i}}{\partial \psi \beta} u_{t}^{\beta}(\psi) v_{j}^{s}(x) v_{k}^{t}(x)+\frac{\partial v_{j}^{i}}{\partial x^{k}} \\
& \Rightarrow \underset{\substack{\text { Moving } \\
\text { terms }}}{ } \frac{\partial v_{j}^{n}}{\partial x^{n}}-\frac{\partial v_{k}^{i}}{\partial x_{j}}=\frac{\partial v_{\alpha}^{i}}{\partial \psi \beta} u_{s}^{\alpha}(\psi) u_{t}^{\beta}(\psi) v_{j}^{s}(x) v_{k}^{t}(x) \\
&
\end{aligned} \quad-\frac{\partial v_{\alpha}^{i}}{\partial \psi \psi^{\beta}} u_{s}^{\alpha}(\psi) u_{t}^{\beta}(\psi) v_{k}^{s}(x) v_{j}^{t}(x) .
$$

Multiply $\quad u_{\gamma}^{j}(x) u_{\delta}^{k}(x) \quad$ on bot asides

$$
\begin{aligned}
& \Rightarrow \quad\left(\frac{\partial v^{i}(x)}{\partial x^{k}}-\frac{\partial u_{k}^{i}}{\partial x_{j}}\right) u_{\gamma}^{j}(x) u_{j}^{k}(x) \\
& =\frac{\partial v_{\alpha}^{i}}{\partial \psi^{\beta}}(\psi) u_{\gamma}^{\alpha}(\psi) u_{\gamma}^{\beta}(\psi)-\frac{\partial r_{\alpha}^{i}}{\partial \psi \beta}\left(\psi u_{\delta}^{\alpha}(\psi) u_{\gamma}^{\beta}(\psi)\right. \\
& =\left(\frac{\left.\partial v_{\alpha}^{i}(\psi)-\frac{\partial v_{\beta}^{i}(\psi)}{\partial \psi^{\alpha}}\right) u_{\gamma}^{\alpha} u_{\delta}^{\beta} \Rightarrow}{\partial}\right. \\
& \text { A s in separation of } \\
& (\operatorname{Com}) \Leftrightarrow \sum_{j, k}\left(\frac{\partial r_{j}^{i}}{\partial x^{k}}-\frac{\partial r_{k}^{i}}{\partial x^{j}}\right) u_{\gamma}^{j}(x) u_{\delta}^{k}(x)=C_{\gamma \delta}^{i} . \\
& \text { Com } \Leftrightarrow\left[\left(\frac{\partial v_{j}^{i}}{\partial x^{k}}-\frac{\partial v_{k}^{i}}{\partial x j}\right)=\sum_{r \delta} C_{\gamma \delta}^{i} v_{j}^{\gamma} v_{k}^{\delta}\right.
\end{aligned}
$$

(b) Find $v_{j}^{i}(x)$ solves (Com)

This is reduced to solving ODE.
The Jaubi identity is the same as

$$
\begin{aligned}
& {[[\xi \eta], z]=C_{p \gamma}^{s} \xi^{\beta} \eta^{\gamma} z^{t} C_{s t}^{\alpha}=C_{s t}^{\alpha}=C_{p r}^{s} \xi^{\beta} \eta^{\gamma} z^{t}} \\
& \xi=\xi^{i} e_{i} \quad\left[e_{i} e_{j}\right]=C_{i j}^{k} e_{k} \\
& \eta=\eta^{j} e_{j}
\end{aligned}
$$

$$
\begin{align*}
& C_{s t}^{\alpha} C_{p \gamma+}^{s} C_{s \beta}^{\alpha} C_{\gamma t}^{s}+C_{s \gamma}^{\alpha} C_{t \beta}^{s}=0 \tag{J}\\
& (\beta \gamma, t) \rightarrow(\gamma t, \beta) \rightarrow(t \beta \gamma)
\end{align*}
$$

This is needed to solve (Com) \& find v_{j}^{i}
PDE Sometimes can be solved by ODEs, integrating along characteristics. But the method here is a bit more specialized since (J) is used crucially.
Sketch: $\left\{\begin{array}{l}\frac{d w_{j}^{i}}{d t}=\delta_{j}^{i}+c_{d i}^{i}\left[a^{a}\right]_{j}^{\beta} \\ w_{j}^{i}(0)=0\end{array} \quad a \in \mathbb{R}^{n}\right.$
Solution called $\omega_{j}^{i}(t, a)$
Then let $v_{j}^{i}(x)=w_{j}^{i}(1, x)$
It is a miracle that v_{f}^{i} solves (com).
This fact heavily depends the Jacobi identity.
Summarize: $\left\{C_{j h}^{\prime}\right\}$ completely detained ψ, the product function near e. Hence the structure of ϵ. Reference on Lie's fundamental theorem namely, is Portryagin Topological Groups. ch 10 .

Checking Jamobi identity:

$$
\begin{aligned}
& \left(b_{\beta \gamma}^{\alpha}-b_{\gamma \beta}^{\alpha}\right)\left(b_{\mu \nu}^{\beta}-b_{v \mu}^{\beta}\right)+\left(b_{\beta \nu}^{\alpha}-b_{\nu \beta}^{\alpha}\right)\left(b_{\gamma_{\mu}}^{\beta}-b_{\mu \nu}^{\beta}\right)+\left(b_{\beta \mu}^{\alpha}-b_{\mu \beta}^{\alpha}\right) \\
& { }^{\left(b_{v \gamma}^{\beta}-b_{\gamma u}^{\beta}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& -b_{\gamma \beta}^{\alpha} b_{\mu \nu}^{\beta}+b_{\gamma \beta}^{\alpha} \frac{b_{\nu \mu}^{\beta}}{(2)}-b_{v \beta}^{\alpha} b_{\gamma_{\mu}}^{\beta}+b_{\nu \beta}^{\alpha} b_{\mu \nu}^{\beta}-\underbrace{b_{\mu \beta}^{\alpha} b_{v \gamma}^{\beta}}_{(4)}+b_{\mu \mu}^{\alpha} b_{\gamma \nu}^{\beta} \\
& (*) \rightarrow b_{\beta \gamma}^{\alpha} b_{\mu \nu}^{\beta}-b_{\mu \beta}^{\alpha} b_{\nu \gamma}^{\beta}=h_{\mu \nu \gamma}^{\alpha}+h_{\mu v}^{\alpha}-g^{\alpha} / v \gamma-g_{\gamma}^{\alpha}
\end{aligned}
$$

Apdy permutation to the indics

$$
\begin{aligned}
& \text { (1) } V_{\beta}^{\alpha}(x)=\left.\frac{\partial \psi^{\alpha}(x, y)}{\partial x \beta}\right|_{y=\varphi(x), \text { namely } y=x^{-1}} \\
& \psi^{\alpha}=x^{\alpha}+y^{\alpha}+b_{\beta \gamma}^{\alpha} x^{\beta} y^{\gamma} \\
& \Rightarrow \frac{\partial \psi^{\alpha}}{\partial x \beta}=\delta_{\beta}^{\alpha}+b_{\beta \gamma}^{\alpha} y^{\gamma} \\
& \text { If } y=x^{-1} \& x=e \Rightarrow y=e \\
& \left.\Rightarrow \frac{\partial \psi^{\alpha}}{\partial x \beta}\right|_{y=\varphi(x)}=\delta_{\beta}^{\alpha} \text { at } x=e
\end{aligned}
$$

Nancely $\binom{\alpha}{v_{\beta}}$ is the identity matrix at $x=e$

$$
\left.\begin{array}{l}
\text { (2) } v_{\beta}^{\alpha}(\psi) \frac{\partial \psi^{\beta}}{\partial x^{\gamma}}=v_{y}^{\alpha}(x) \Leftrightarrow
\end{array} \begin{array}{ll}
\frac{\partial \psi^{\beta}}{\partial x^{\gamma}}=u_{\gamma}^{\beta}(\psi) v_{\gamma}^{\alpha}(x) \\
\psi\left(x_{0}\right)=y_{0}
\end{array}\right\}
$$

$$
\psi^{x_{0}, y}
$$

Consider $\psi(x, y)=\psi(x)_{\cdot,, y} \longrightarrow \psi\left(x_{0}\right)_{x_{0,}, y}=y$.
Then $\quad \psi(e, y)=y$ by the
ψ so defined satisfir $\psi(x, \psi(y, z))=\psi(\psi(x, y), z)$

$$
\begin{aligned}
& P=\psi(x, y) \quad \dot{q}=\psi(y, z) \\
& w=\psi(R, z) \quad w^{*}=\psi(x, \Psi) \\
& w(e)=\psi(\psi(e, y), z)=\psi(y z)=\underline{q} \\
& w^{*}(e)=w^{q} \\
& \frac{\partial w^{*}}{\partial x^{\gamma}}=\frac{\partial w^{\alpha}}{\partial p^{\beta}} \frac{\partial R^{\beta}}{\partial x^{\gamma}}=u_{t}^{\alpha}(w) v_{(\beta)}^{t} \underbrace{\beta} u_{s}^{\beta}(p) V_{\gamma}^{s}(x)=U_{t s}^{\alpha}(w) V_{\gamma}^{t}(x)
\end{aligned}
$$

W^{*} \& W are both solution of

$$
\left\{\begin{array}{l}
\frac{\partial w^{\alpha}}{\partial x^{\gamma}}=u_{t}^{\alpha}(w) v_{\gamma}^{t}(x) \\
w(e)=v
\end{array}\right.
$$

This verifies the associativity of ψs--defined.
(3) why $w_{j}^{i j}(1, x)=v_{j}^{i}(x)$ satisfies the (Com)

$$
h_{j k}^{i}(t)=\frac{\partial w_{k}^{i}(t, a)}{\partial a j}-\frac{\partial w_{j}^{i}(t a)}{\partial a^{k}}-C_{\alpha \beta}^{i} w_{j}^{\alpha}(t a) w_{k}^{\beta}(t, a)
$$

the $(\mathrm{com}) \Leftrightarrow \quad h_{j b}^{\prime}(1)=0$
We shall show $h_{j}^{\prime}(t)$ satrifis a linear ODE $\&=0$ at clary at $t=0 \quad h_{j h}^{i}(0)=0$

Wyeth $O D E \Rightarrow$

$$
\begin{aligned}
& \frac{d}{d t} h_{j h}^{i}(t)=C_{j \beta}^{i} w_{k}^{\beta}+C_{\alpha \beta}^{i} a_{\partial}^{\alpha} \frac{w_{k}^{\beta}}{\partial a j}-c_{k \beta}^{i} w_{j}^{\beta}-C_{\alpha \beta}^{i} a^{\alpha} \frac{\partial w_{j}^{\beta}}{\partial c_{k}} \\
&-C_{\alpha \beta}^{i}\left(\delta_{j}^{\alpha}+C_{\gamma \delta}^{\alpha} a^{\gamma} w_{j}^{\delta}\right) w_{k}^{\beta}-C_{\alpha p}^{i} w_{j}^{\alpha}\left(S_{k}^{\beta}+C_{\gamma \delta}^{\beta} a^{\gamma} w_{k}^{\delta}\right)
\end{aligned}
$$

Using the Jawabi \Rightarrow

$$
\begin{aligned}
& \text { Sing the Jawbi } \Rightarrow h_{j L}^{i}=C_{\alpha \beta}^{\alpha}\left(\frac{\partial \omega_{h}^{\beta}}{\partial a j}-\frac{\partial \omega_{j}^{\beta}}{\partial a^{h}}=C_{\gamma \delta}^{\beta} \omega_{j}^{r} \cdot \omega_{h}^{\delta}\right) \\
& =C_{\alpha \beta}^{i} a^{\alpha} h_{j h}^{\beta} \Rightarrow\left\{\begin{array}{l}
\frac{d h}{d t}=C_{\alpha \beta} a^{\alpha} h^{\beta} \\
h(0)=\cdot
\end{array} \Rightarrow h(t) \equiv 0\right.
\end{aligned}
$$

